Цифровая связь

Исторически первой попыткой передать цифру считают телеграф Шиллинга (1832). Постепенно изобретатель, пытаясь снизить число соединительных линий, внедрил методику кодирования печатных знаков двумя состояниями. Аналогично работает азбука Морзе (1840).

Цифровая связь – род электросвязи, использующий дискретные сигналы, как правило, двоичной системы счисления.

История кодирования информации с точки зрения связи

Считаем излишним упоминать опостылевший читателям дым костра пещерных людей. Семафор Шаппа столь же никудышный пример. И тут Википедия, сообщила: Лейбниц, основоположник двоичного счета, интересовался китайской Книгой перемен… Глубочайшие древние знания сегодня недооценивается брезгливо отбрасывающими непонятое неучами. Пойдём узкой тропой.

Комбинированная двоично-десятичная система счисления
Комбинированная двоично-десятичная система счисления

Древние жители Малайзии использовали комбинированную двоично-десятичную систему счисления. Ритуальные барабаны Африки формировали кодовый сигнал, служащий различным целям.

Древний Египет

Википедия не даст соврать – египтяне хорошо умели считать. Дробей было даже два вида:

  1. Египетские получили собственное название. Бытовала запись числа конечной суммой простых дробей. Математики доказали: каждое положительное рациональное число раскладывается указанным образом. Методику переняли многие древние цивилизации.
  2. Глаз Гора (напоминает Око Ра), знак даёт защиту, королевскую власть, отличное здоровье. Современные исследователи дали изображению собственные названия, отметив схожесть отдельных элементов с цифрами.

Глаза Гора

Гор считается сыном Осириса и Исиды. Традиционно наделяют головой сокола. Правый глаз древних изображений олицетворяет бога солнца Ра, левый – бога мудрости Тота. Оба являются зеркальными отражениями друг друга. Иероглифы, обозначающие глаз, имеют смысл: делатель; человек, занимающийся трудом. Различные участки изображения представляли единицу, делённую на первые 6 степеней двойки, напоминая современный бинарный код:

  1. 1/2. Правая сторона глаза.
  2. 1/4. Глазное яблоко.
  3. 1/8. Бровь.
  4. 1/16. Левая сторона.
  5. 1/32. Изгиб, завиток, имитирующий морщину ниже глаза.
  6. 1/64. След слезы.

В 2003 году Джим Риттер окончательно доказал несостоятельность теории сходства элементов глаз с иероглифами, обозначающими цифры. Однако терминология прижилась, продолжает активно применяться учёными-математиками. Египтяне применяли делители степень двоек, подсчитывая урожай, объёмы жидкостей. Первые следы употребления датируются 2400 г. до Р.Х. Порядок действий при умножении задействует алгоритм, включающий двоичное представление второго числа.

Теория сходства элементов глаз с иероглифами
Теория сходства элементов глаз с иероглифами

Книга перемен

Документ, датированный IX в. до Р.Х., демонстрирует систему гаданий в четверичной системе счисления. Базовая система образована:

  1. Двойственной природой сил: инь, ян.
  2. Восемью триграммами Будуа (общее количество: третья степень числа два).
  3. 64 гексаграммами Люшисыгуа (общее количество: шестая степень числа два).

Шао Йонг выстроил гексаграммы согласно порядку возрастания, создав набор чисел. Хотя никогда не пытался использовать картинки, выполняя математические вычисления.

Индия

Древний учёный Пингала (2 в. до Р.Х.) разработал ритмическую систему стихосложения, напоминающую азбуку Морзе – длинные/короткие слоги. Трактат Чандас-шастра стал обрядовой классикой, сопутствующей Ведам. Информация описана матрицей, помогающей снабдить стихотворение неповторимым ритмом. Современный двоичный аналог отсутствует.

Средневековая двоичная система

В 1605 году Фрэнсис Бэкон рассматривал систему двоичного кодирования букв, предлагая визуальную систему распознавания шифрованной информации. Попутно упоминал возможность использования:

  1. Колоколов.
  2. Огней.
  3. Факелов.
  4. Мушкетных залпов.
  5. Трубных мелодий.

Джон Непер (1617) описал систему двоичных вычислений. Томас Харриот интересовался вопросом, поленившись опубликовать результаты. Позже бумаги были найдены среди рукописей учёного. Первой тематической рукописью считают работу Хуана Карамуэля и Лобковица (1670). Раздел Ru binara arithmetica вводит понятие двоичной системы:

  • 1 = а.
  • 0 = о.

Попутно богослов упоминает возможность использования основ счисления выше десятичной, предлагая заменять недостающие цифры буквами. 32 = аооо. Поныне используется современными вычислительными системами. Учёный пытался показать: двоичное счисление подсказано природой. Лобковиц опирался на музыкальный строй инструментов. Вплетая витиеватые представления философии, указал небесную подоплёку применения троичной системы. Четыре стороны света увязал на четверичную.

Система двоичного кодирования букв Ф. Бэкона
Система двоичного кодирования букв Ф. Бэкона

Похожими тропами двигались мысли Харриота, чьи работы составляли тайну для современников.

Лейбниц

Лейбниц заинтересовался проблемой в 1979 году. Первому знакомству с китайским раритетом обязан члену миссионерской общины Иоакиму Буве, посещавшему (1685) страну шелка лично. Гексаграммы подтвердили универсальность собственных христианских мировоззрений Лейбница. Проиллюстрируем не очевидный ход мысли учёного:

  1. Христос создан из ничего (Ex nihilo) велением Бога. Противопоставляясь другим людям, созданным из материи. «Нелегко донести язычникам концепцию творения из ничего посредством силы Бога. Теперь каждый может показаться замечательную систему счисления, где мир представлен число 1, ничто – числом 0.» Цитата письма герцогу Брауншвейгу с приложенными гексаграммами.
  2. Связка Бытие/Ничто формирует дуалистическую систему.
  3. Двоичный счёт является даром небес.

Двадцать пять лет спустя вышел очерк Объяснение двоичной арифметики, использующей числа 0 и 1, дополненное объяснением полезности и связи с китайскими фигурами Фу Си. Семантическое представление значений идентично общепринятому современному. Учёный потрудился выстроить гексаграммы (см. выше), получив мощное средство производства вычислений.

Двоичная арифметика

Джордж Буль (1854) создал знаменитую логику, получившую волей сообщества математиков уникальное название. Логика стала основой конструирования современных цифровых приборов. Клод Шеннон (1937, Массачусетский технологический институт) сформулировал ключевые тезисы реализации электронных вычислителей, использующих переключатели, реле. К ноябрю Джордж Штибиц реализовал концепцию, построив Модель К. Литера обозначала кухню, где трудился изобретатель.

Пример двоичной арифметики
Пример двоичной арифметики

США

Первый вычислитель умел складывать цифры. Лаборатории Белла организовали исследовательскую программу, поставив главным Штибица. Оконченная 8 января 1940 года машина использовала комплексные числа. Демонстрируя детище конференции Американского математического общества на базе колледжа Дартмуна, изобретатель подавал команды посредством телефонной линии, используя телетайп. Продемонстрировав прототип современной клавиатуры – устройства ввода. Демонстрацию посетили лично:

  1. Джон фон Ньюманн.
  2. Норберт Винер.
  3. Джон Моучли.

Германия

Параллельно компьютер Z1 (альтернативное имя V1 – экспериментальная модель) построил Конрад Цузе. Двоичный вычислитель считывал простейшие инструкции с перфорированной плёнки. Изделие 1935-1936 г.г. считают первым программируемым устройством современной истории человечества. Разработка полностью оплачена частными фондами. Компьютер весом 1 тонну полностью уничтожен бомбардировкой Берлина 1943 года войсками союзников. Рядом сгорели чертежи…

Это интересно! Оригинальное имя V1 повторяло название знаменитых Фау-1 (самолётов-снарядов). Поэтому современной литературой употребляется Z1.

Новинка содержала большую часть составных блоков современного ПК:

  1. Контрольный блок – аналог процессора.
  2. Математическую логику с плавающей запятой.
  3. Память (читаемая/исполняемая) объёмом 64 слова.
  4. Устройства ввода-вывода, включая считыватель 35 мм перфоленты.

Контрольный блок давал возможность наблюдать последовательность исполняемых операций. Вычислительный блок оперировал 22-битными числами с плавающей запятой. Логические операции расширяли функциональность. Первоначальный набор содержал 9 инструкций, занимающих 1-20 «процессорных» циклов.

Входные/выходные данные десятичные.

История развития цифровой связи

Исторически первой стала амплитудная модуляция сигнала, внедрённая Поповым за неимением выбора. Частотная запатентована 26 декабря 1933 года Эдвином Армстронгом. Отличается более широкой полосой частот, занимаемых передаваемым сигналом. Цифровой сигнал использует обе методики. Отличие описывается способом представления информации:

  1. Величина физического мира аналогового характера становится цифрой двоичной системы счисления.
  2. Символы 0, 1 кодируются установленным образом.
  3. Приёмная сторона расшифровывает послание.

Исторически первым устройством, применяющим кодирование называют телеграф Шиллинга (1832) – реализацию идеи Андрэ-Мари Ампера. Некорректно называть связь цифровой, потому что буквы также являются объектами дискретными. Отсутствует факт преобразования величин.

Мультиплексирование

Необходимость нарезать сигнал вызвана желанием телеграфистов использовать одну линию передачи. Первый трансатлантический кабель стоил недёшево. Немедля начали канал сдваивать, учетверять. Наука дискретизации шагает параллельно первым потугам моряков утопить кабель. Американский изобретатель Мосес Фармер предложил (1853) мультиплексирование с временным делением абонентов. Несколько передатчиков смогли использовать одну линию.

Машина мультиплексирования Э. Бодо

Двадцать лет спустя Эмиль Бодо построил машину автоматического мультиплексирования телеграфов Хагис. Долгое время положение дел устраивало общественность. Отсутствие элементной базы стопорило работы. В 1903 году Майнер создал электромеханический коммутатор временного мультиплексирования телеграфов. Последовательно технологию транспонировали на телефонные линии. Частота нарезки составляла 3,5-4 Гц, оставляя желать лучшего.

Кабельная система передачи изображений Бартлейна (1920) посылала оцифрованные рисунки принимающему факсу на другой стороне Атлантического океана. Применение бинарной арифметики снижало время передачи, достигая показателя 3 часа. Изначально производилась кодировка пятью оттенками серого. Постепенно число повышалось, достигнув (1929) пятнадцати. Имя технологии является производным двух создателей концепции:

  1. Гарри Бартоломью.
  2. Майнхард МкФарлейн.

Идею перенял Пол Рэйни, запатентовавший факсимильную машину, производящую оцифровку изображения 5-битным кодом посредством опто-механического конвертера. Попытка промышленного выпуска провалилась. Британского инженера Алека Ривса считают основоположником оцифровка голосовых сообщений. Теоретически рассмотрев вопрос, изобретатель подал заявку французскому бюро (по месту основной работы). Война подзатянула решение комиссии. Положительный ответ принёс 1943 год.

Зелёный шершень

Историки затрудняются указать первый факт установления цифровой связи, запутанный секретами Второй мировой войны. Шифровальное оборудование SIGSLAY радовало союзников непонятными врагам передачами. Википедия однозначно называет альянс пионерами. Техника использовала кодово-импульсную модуляцию. Находятся энтузиасты, приписывающие роль первопроходца Попову. Полагаем, несостоятельность трактовки очевидна.

Это интересно! Прототип первого цифрового связного оборудования назвали программой Зелёный шершень. Передатчик похоже гудел, кодируя информацию. Зелёный шершень помог провести 3000 конференций.

Немецкие шпионы прослушивали каналы связных скрамблеров А-3, построенных Вестерн Электрик. Иногда глушили трафик. Враждующие стороны постоянно взламывали взаимную защиту. Злоумышленникам помогал анализатор спектра. Сигсалли маскировал посылку, спрятанную предварительно вокодером, псевдошумовым сигналом. Разработчики заложили частоту дискретизации 25 Гц. Изобретатели продемонстрировали ряд новых технологий, реализуя схему:

  1. Выборку десяти каналов линии диапазона 250..2950 Гц шифрации.
  2. Оцифровку согласно правилу наличия, отсутствие фонации.
  3. Наличие характеризовалось высотой тона, скорость изменения ниже 25 Гц.

Выборки нарезали частотой 50 Гц, амплитуду конвертировали шестью уровнями (числом 0..5). Шкала дискретизации нелинейная с большими пролётами на сильных сигналах. Разработчики использовали данные физиологов, констатирующих: оттенки голоса закладываются не всеми колебаниями голосовых связок одинаково. Звук с фонацией кодировали парой 6-уровневых чисел, добиваясь получения 36 уровней.

Криптографический ключ образован серией случайных значений 6-уровневых чисел. Код вычитался из выборки голосовых отсчётов по модулю 6, скрывая содержимое. Несущая подвергалась частотной манипуляции (резкое изменение значения несущей). Приёмник принимал набор значений, образовывал выборку сообразно принятой системе кодирования. Затем сигнал расшифровывали, производя сложение по модулю 6. Вокодер довершал цепочку преобразований.

  1. Белым шумом заполнялись промежутки, лишённые фонации.
  2. Генератор формировал сетку гармоник, частота которых контролировалась высотой тона (см. выше).
  3. Отдельный переключал тонации контролировал тип звучания.
  4. Дело довершал регулируемый усилитель.
Пентагон разместил первый терминал
Пентагон разместил первый терминал

Шумовые комбинации шифрования ключа изначально записали с большого ртутного выпрямителя на фонограф. Информацию разослали пользователям системы. Терминал, сформированный 40 блоками, весил 50 тонн, потребляя 30 кВт энергии. Комнату приходилось охлаждать воздухом. Первый комплект занял помещение здания Пентагона. Президент Франклин Рузвельт круглосуточно имел возможность общаться, выслушивая планы премьер-министра Уинстона Черчилля, имевшего собственный экземпляр под Оксфорд Стрит. 15 июля 1943 года состоялась первая пресс-конференция союзников. Стороны установили необходимое количество наборов, включая один, занявший борт флагмана Генерал Дуглас МакАртур.

Достижения

  1. Первая секретная радиосвязь.
  2. Первая дискретизированная передача данных.
  3. Внедрение концепции кодово-импульсного радиоканала.
  4. Использование компадирования.
  5. Первая радиопередача многоуровневой частотной манипуляции.
  6. Первая технология компрессии спектра речи.
  7. Внедрение методики частотного деления каналов при помощи манипуляции.

Развитие концепции цифровой связи

Канадская военно-морская система DATAR (1949) стала транслировать информацию. Формирование считают первым примером военной информационной системы, реализуя концепцию единого командного пункта. Канада хорошо помнила 1943 год, когда получила возможность координировать действия морских сил союзников. Командование задумало упростить процесс. Круглый планшет, напоминающий экран радиолокационной станции, показывал положение участников баталии. Проект затрагивал морской флот, попутно специалисты отметили возможный охват всех родов войск.

Канадская система DATAR

Демонстрация 1953 года провалилась, заставив ВВС США заняться разработкой SAGE. Центральная система управляла действиями NORAD, отражая возможные атаки воздушного флота противника. Обстановка, сдобренная изрядной долей дисплеев, компьютеров, стала неотъемлемой частью холодной войны. Основу производственной мощности составил супервычислитель AN/FSQ-7, снабдивший процессорным временем командные центры, занимавший 22000 квадратных футов пола.

Стоимость, исчисляемая миллиардами долларов, перекрыла затраты Манхэттанского проекта. Тест Небесного щита показал перехват 25% бомбардировщиков. Сегодня управляющая роль получена микрокомпьютерам, дублирующим функции машинных залов. Ограниченность технологии объяснялась необходимостью использования вакуумных электрических приборов. Военные отдали часть технологий промышленности. 24-канальные машины 1953 года были далеки океану, военной авиации. Истинное призвание техники RCA – посылать звуковые сообщения на Брод Стрит (Нью-Йорк), обеспечивать функционирование линий Роки Пойнт – Лонг Айленд.

Цифровая революция

Подложка давно была готова. Основы, кропотливо развиваемые учёными, заложил Чарльз Бэббидж. Технологии связи развивали телеграфисты. США выделили для цифровых проектов бюджет. Статья Клода Шеннона Математическая теории связи (1948) стала путеводной звездой отрасли. Промышленность ринулась оцифровывать аналоговые сигналы. Копии стали идентичны оригиналом, перестали стариться. Цифровая информация без потерь преодолевала кабель, эфир.

1947 год принёс миру полупроводниковый триод. Военные мигом оценили предоставляемые возможности. Вероятно засекреченные ранее сведения специально обнародовали, оценив потенциал гражданской промышленности США. Параллельно Великий рывок совершила Япония, порастеряв остатки феодального строя. 50-60-е годы основными потребителями оставались военные, правительство. В 1969 году Intel выпустили микропроцессор 4004, подготовивший базис будущей революции. Одновременно США заложили будущую основу общемировой сети интернет, инициировав проект ARPANET.

Хронология развития кодово-импульсной модуляции

Важно! Зал славы национальных изобретателей США наградил Бернарда Оливера, Клода Шеннона за создание кодово-импульсной модуляции (патент США 2.801.281, 1957 год).

Первая система вещательных приёмопередатчиков (1961) несла 24 телефонных канала кодово-импульсной модуляции (КИМ), частотой выборки 8 кГц, кодированных 8-битными числами. Качество связи соответствовало используемому ранее частотному мультиплексированию. Указанное помогло оцифровать:

  1. Связь. Поколение 2G (1992) сотовых сетей стало цифровым.
  2. Телевещание (начало 90-х, XX века). Женевское соглашение, принятое 17 июня 2015 года, установила сроки устранения странами последних признаков аналогового вещания. Первыми (2006) ушли Нидерланды, Люксембург. Россия планирует окончить процесс в 2019.
  3. Радиовещание (конец 80-х, XX века). Норвежская корпорация NRK 1 июня 1995 года первой начала коммерческую трансляцию. К 2017 году 38 стран запустили сервис, включая Россию.

Изобретённая Алеком Ривсом (1937) импульсно-кодовая модуляция постепенно достигла областей звукозаписи, позже захватив коммерческое вещание. Пионерами стали продукты японских брендов (1971) NHK, Ниппон Колумбия. Параллельно опыты вели ВВС, создавшие цифровой двухканальный рекордер. Годом позже британцы провели пробную цифровую трансляцию. Развитие цифровой записи предшествовало появлению вещания.

Цифровой двухканальный рекордер

  • Четвёртое поколение коммутаторов 4ESS внедрено в систему телефонных линий США (1976).
  • Линейная кодово-импульсная модуляция (1982) включена красной книгой стандартов записи компакт-дисков.
  • AES3, основа будущего S/DIF, вводится в обиход (1985).
  • Формат файлов .WAV становится стандартом персональных компьютеров (1991).
  • Мировая запись носителей переходит на цифру: DVD (1995), Blu-ray (2005).
  • Разработка цифровых протоколов передачи (2001) любительских раций (D-STAR, компании ICOM).
  • HDMI поддерживает кодово-импульсную модуляцию (2002).
  • Контейнер RF64 включает КИМ (2007).

Резюме развития технологии

Виды радиолюбительской связи на КВ принёс миллениум. Упоминая наработки Второй мировой войны, попутно обсуждали громадные размеры оборудования (машинные залы). Минимизация шла полным ходом, однако новинки оставались засекреченными. Исключая области записи, компьютерных сетей. Развал СССР явил миру чудеса цифровой техники: вещание, персональные вычислительные машины, связь. Поэтапно мир выбрасывает вон аналоговые технологии, модернизируя оборудование.

Современная цифровая техника

Структурная схема процесса позволяет игнорировать старение, погодные условия, помехи. Модем шутя выполняет работу машинного зала времён Второй мировой войны. Радиолюбителям стали выделять технику, о которой мечтали вьетнамские войска. Процесс вскоре позволит домоседам проектировать системы, насиживая уютное кресло. Возблагодарим интернет, подаривший людям возможности, доселе не известные планете.

Ссылка на основную публикацию